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Abstract

Moisture content is a critical factor in quality and shelf-life of foods and agricultural products.
This research dealt with prediction of moisture ratio of tea leaves using intelligent genetic
algorithm-artificial neural networks (multilayer perceptron, MLP; and radial basis function,
RBF) and semi-empirical models during different thin-layer drying processes (i.e. sun, air,
hot air, and microwave drying). Effective diffusivities were found in the range of 7.5x107 to
9457.2x107m?/h , which the highest D, 7 value was achieved for microwave drying. Moisture
ratio data were modeled using fourteen semi-empirical equations among which Henderson
and Pabis, Henderson and Pabis- modified, two-term-modified and Wang and Singh models
received highest correlation coefficients. However, the prediction efficiencies of MLP (MSE,
NMSE and MAE of 0.0084, 0.0597 and 0.0722, respectively) and RBF (MSE, NMSE and
MAE of 0.0043, 0.0973 and 0.0564, respectively) networks were found to be more competent
than semi-empirical models and therefore could be applied successfully for predicting moisture

ratio of tea leaves during different drying processes.

© All Rights Reserved

Introduction

Due to its sensory properties, stimulating effects
and potential health benefits, tea (Camellia sinensis
L.) is considered as the most popular beverages after
water all over the world (Weisburger, 1997; Yang and
Landau 2000). The annual global production of tea
was reported to be about 4.51 million tons in 2010
(FAOSTAT, 2010). Tea is used in different types,
e.g. green, black, and oolong tea. However, the most
significant positive effects on human health have
been observed by consumption of green tea (Jain et
al.,2013).

Possessing critical effects on physical, structural,
chemical and nutritional features of the product,
makes drying as one of the main operations in tea
processing. Different drying methods have been
applied for tea; traditionally it is dried using sun or air
drying approaches. In spite of widespread usage and
low initial operation cost, the quality of tea undergoes
significant deterioration (Chan et al., 2009). Oven
and microwave were also used for drying of tea
(Dong et al., 2011a; Hatibaruah et al., 2012). Oven
drying has some disadvantages such as low energy
efficiency and long drying time. Compared to oven
drying, microwave can significantly reduce drying
time of biological materials with minimum quality
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degradation. Therefore, microwave drying has now
gained popularity as an alternative drying method
for a variety of food products (Sellami et al., 2011;
Zielinska et al., 2013; Rahimmalek and Goli 2013).

Moisture content significantly influences the
quality and shelf life of dried tea. During drying
moisture ratio can be estimated applying semi-
empirical models (Costa and Pereira, 2013).
Although these models give a reasonable fitting of
the experimental data, their application is limited due
to their semi-empirical nature and therefore, they are
only capable of estimating data within the processing
conditions in which they were developed or they
depend on a large number of physical properties of
product (Fathi ez al., 2011a).

Artificial neural networks (ANN) are intelligent
modeling systems based on relationship between
dependent and independent variables. This
methodology could be used for modeling linear
and nonlinear phenomena and does not need the
explicit knowledge of the physical meaning of
the system or process under investigation (Fathi
et al., 2011b). ANN have been recently used for
prediction of green tea polyphenols content (Xi et
al., 2013), kiwifruit shrinkage (Fathi ef al., 2011c)
and extraction efficiency of manganese (Khajeh
and Barkhordar, 2013). The main drawback of ANN
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is that their parameters such as number of hidden
neurons, learning rate and momentum are chosen
by trial and error. Genetic algorithm (GA) as an
optimization technique can be used for overcoming
this limitation of neural network. GA is inspired by
the natural selection principles and Darwin’s species
evolution theory. GA offers several advantages over
the conventional optimization method such as less
susceptibility to be stuck at local minima, requiring
little knowledge of the process being optimized and
capability to find the optimum conditions when the
search space is very large (Fathi ef al., 2011b).

Dong et al. (2011b) compared chemical features
of Eucommia ulmoides flower tea during microwave
and hot air drying and reported that microwave drying
method could maximally maintain the functional
constituents. Effects of different drying methods
(i.e. microwave, oven, sun, air, and freeze-drying)
on antioxidant properties of tea were investigated.
All three thermal drying methods led to decline in
total phenolic content, ascorbic acid equivalent
antioxidant capacity, and ferric-reducing power with
minimal effects on ferrous ion-chelating ability and
lipid peroxidation inhibition activity. High amount
of losses were observed for air dried leaves. While,
freeze-drying did not resulted in significant decrease
in total phenolic content, ascorbic acid equivalent
antioxidant capacity, and ferric-reducing power.
Panchariya et al. (2002) applied different semi-
empirical models to predict moisture content during
drying of black tea at 80-120°C and concluded that
Lewis model gave better predictions. Effective
diffusivity varied from 1.14x107!! to 2.98x10!! m?/s
over the temperature range.

In spite of numerous works conducted on the
effect of drying methods on chemical compositions
of tea leaves, there was not much attention on
modeling of mass transfer during drying. Therefore
the objective of this research was to model moisture
ratio by semi-empirical and intelligent models during
different drying processes (i.e. sun, air, hot air, and
microwave drying) of tea leaves.

Materials and Methods

Sample collection and thin-layer drying

Whole tea leaves (Chinese hybrid variety)
obtained from a tea farm in Lahijan city in the
Northern regions of Iran in the fall growing season. In
order to inhibit enzymatic browning, the leaves were
immediately blanched using steam at 90°C for one
minute. The leaves were then thin-layer dried using
following methods: (i) sun drying at about 35°C; (ii)
air drying in shade at about 25°C; (iii) hot air drying

at 60°C; (iv) hot air drying at 80°C; (v) hot air drying
at 100°C; and (vi) microwave drying at 800 W.

For sun drying leaves were exposed to direct
sunlight in trays at about 35°C for 7.5 h in November
in Isfahan, Iran. Air drying was carried out under
natural air flow in shade for 36 h. Oven drying was
conducted in a ventilated oven (Osk, Japan) for 7.5,
5.25 and 4.5 h at 60°C, 80°C and 100°C, respectively.
Microwave drying was performed in a domestic
digital microwave oven (Nikai, NMO-518N, Japan)
with technical features of 230 V, 800 W. The samples
were dried for 240 seconds. The thickness of samples
for all thin-layer drying methods was kept constant in
5 mm. Moisture contents of samples were determined
using moisture meter (Ohaus MB45; Massachusetts,
USA) during drying at appropriate time intervals.

Semi-empirical models
The drying curves were represented in moisture
ratio (MR) (Eq. 1) versus time (z, in h).

MC,— MC,

MR =71e. —arc, (1)

MC,, MC, and MC,_ are initial moisture content,
moisture content at time t and equivalent moisture
content.

Moisture ratio values were then fitted using
fourteen semi-empirical models listed in Table 1
applying SlideWrite plus software. In these equations
a, b, ¢, k, k, k,, k; and n model constants.

Artificial neural network

In current research, feedforward network
was used for modeling of moisture ratio of tea
leaves. Two commonly applied feedforward ANN
architectures are multilayer perceptron (MPL) and
radial basis function (RBF) networks. MLP consists
of (i) an input layer with neurons representing
independent variables, (ii) an output layer with
neuron(s) representing the dependent variable(s), and
(ii1) one or more hidden layers containing neuron(s)
help to capture the nonlinearity of the system. The
processing in hidden layers consists of collecting the
data from previous layer, multiplying them by their
corresponding weights, summing the values, putting
the results in a nonlinear or linear activation function
(f) and finally adding a constant value called bias,
mathematically:

y. = E_.-‘"(w___x__j + hias,

(16)

where w, x and y are weight, input and output of
i (sending) and j (receiving) neurons. RBF network,
which consists single radial hidden layer, uses
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Table 1. Semi-empirical mathematical models

Miodel nam e Mviathem atical model Equation MNo.
Diffuson approach MR = gexp(—fz)+(1—a)expl —tdr) @2
Henderson and Pabis MR = aexp[ —Iz) 3
Henderson and Pabis- modified MR = gexp(—kgr)+bexp(—igt)+ cexp(—kz) ':4'
Logarithmic MR = gexp(—lz)+c e
Madilli MR = aexp(—iz")+bt (6
MNewton MR = expl:—kr | (7
Page MR = exp (—iz" ) ®
Page- modified W R g
= ﬂ»fR=axp|:—[kf__l :I ¢
Two-tenm MR = aexp(—kt)+bexp| —kt) (10
Two-term-ex porertial MR =acxp[—}'d :I+(l—a) E‘.Xp[—kﬂ't:l {11
Two-term- modified ﬂ»fR=aexp[—iqr:|+bexp[—k:r:|+c (12
Verma MR = aexp(—kt )+ (1—a)exp(—k,t) (13
Wang and Singh MR =1+ ar+ be (14
Weibull Y (13
MR = exp|:—|t E_,f :|

Gaussian transfer function. The radial basis neurons
are special neurons which have a centroid (u) and a
spreading vector (o). The output of the RBF layer is
determined based on distance between the input vector
and its centroid vector (Eq. 17). Training algorithm
for hidden neurons is generally accomplished by an
unsupervised fashion. While supervised algorithm
is used for output layer. This configuration tends to
learn much faster than MLP.

(17)

In this study, drying method and drying time were
used as input neurons to predict moisture content of
tea leaves as the output of network. A hyperbolic
tangent activation function was used in hidden layer,
while a linear function was applied for the output
layer. The number of hidden neurons varied from 1
to 10. For modeling data were first randomized and
then divided into three partitions of training (40%),
validation (30%) and testing (30%). To avoid over-
fitting of the network the training process was carried
on for 1000 epochs or until the cross-validation
data’s mean-squared error (MSE) did not improve
for 100 epochs. Testing was carried out with the best
weights stored during the training step. Calculation
of the performance of the trained network was based
on the accuracy of the network in the test partition.
Therefore mean-squared error (MSE), normalized
mean-squared error (NMSE), mean absolute error
(MAE) and correlation coefficient (R) for each

output were calculated based on testing data (Fathi
etal.,2011a).

Genetic algorithm

Genetic algorithm, which inspires the principle
of a Darwinian-type survival of the fittest in natural
evolution, is essentially an iterative, population
based, parallel global search algorithm that has a high
ability to find optimal value of a complex objective
function, without falling into local optima. The best
chromosomes mate with other chromosomes of
population and survive for the next generation and
the most excellent chromosome, which is the most
evolved one, is the optimal value. GA optimization
technique consists of three principle processes
(i.e. selection, crossover and mutation). The initial
population of chromosomes is randomly generated.
Selection of individuals to produce successive
generations plays an important role in a GA. In this
step, each chromosome is evaluated by the fitness
function. According to the value of the fitness
function, the chromosomes associated with the fittest
individuals will be selected more often than those
associated with unfit ones. In crossover step, two
individuals reproduced into a new individual. The
mutation operation randomly alters the value of each
element of the chromosome according to the mutation
probability. It provides the means for introducing new
information into the population and therefore avoids
sticking in local minima. This cycle is repeated until
desired convergence on optimal or near-optimal of
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Table 2. Semi-empirical model parameters and their corresponding performance efficiencies
Model
Drying method Diffusion approach Henderson and Pahis
a b k B MSE NMSE MAE a k R MSE NMSE MAE
Sun drying 0.131352 0987793 0.362828 0.047 0.0121 0.0860 0.0851 1.077 0.38034 0.959 0.0109 0.0720 03759
Ajr drying 1.00218 1.00023 0081795 0.988 0.0025 00212 0.0433 102 0.090223 0.991 0.0020 0.0161 00410
Hotair drying (60 °C) -11.723687 0.892032 0.553854 0.862 0.0093 0.0768 0.0854 1.163 0230345 0.904 0.0223 0.1833 0.1373
Hotair drying (30 °C) -78.788631 0981994 0.846615 0.984 0.0039 0.0282 0.0325 1143 0363292 0.927 0.0167 0.1303 0.1148
Hotair drying (100 - N _ . _
© 0999806 1.003731 05281735 0.881 0.0283 02244 0.1478 1114 04379356 0.927 0.0170 0.1296 0.1184
Microwave drying 1.000325 1.000315 1.044647 0.682 0.6993 32339 0.7803 1.008 109.93567 0.998 0.0004 0.0042 00132
Henderson and Pabis- modified L ogarithmic
a b c i ke ks 3 MSE NMSE MAE a c k 3 MSE NMSE MAE
Sun drying 03592 0339 0359 0.38167 03816 03781 0958 0.010 00719 0.0%06 1.38613 03332 021939 0981 0.0057 0.0346 0.0661
Afr drying 03401 0340 034 0.09033  0.0899 00903 0891 0002 00164 0.0430 1.09081 2 D.;' 06 0.07363 0.993 0.0013 0.0101 0.0287
085
Hotair drying (60 °C) 03886 0388 0388 023054 02305 02307 0204 0022 01934 01377 933059 331_333 001688 0979 726829 41683 89412
Hotair drying (80 °C) 03811 0381 0381 0.36331 03633 03629 0927 0016 01305 0.1147 748974 64;393 0.03081 0989 351051 3.1689 35421
Hotair drying (100 -
b 03713 0371 0371 043789 04378 04372 0926 0016 01296 01184 726336 0.0367 0.987 374761 3.6608 61215
Ty 6.20654
Microwave drying 03361 0336 0333 109 617 10261 11033 0997 0000 00042 00132 1.00983 -0.0019% 109288 0.998 0.0073 0.0681 0.0831
Nadilhi Newton
a b K N R MSE NMSE MAE k R MSE NMSE MAE
Sun drying 0.010008 0.010 0.009526 0.0001935 0.527 02810 24756 03773 0.359003 0.947 0.0121 0.0860 0.0851
Adr drying 1.00144 -0.0011 0.064101 1.005752 0.004 0.0010 00098 0.0236 0.08865 0.990 14373 34788 1.0376
Hotair drying (60 °C)  0.010003 0.010 0.009742 0000012 0.623 04400 32758 035851 0.19418 0.835 0.0279 02841 0.1537
Hotair drying (80 °C)  0.010004 0.010 0.0096835 0.0002355 0.612 03770 28148 04963 031716 0879 0.0207 0.1866 0.1200
Hot air drying (100 i
© 0.010005 0.010 0.009626 0.000402 0.606 03610 27386 04881 0304411 0.893 0.0196 0.1679 0.1173
2049792
Microwave drying 0556702 -11.13306 0477356 0 0.755 00430 05153 0.1637 10926852 0993 0.0005 00043 00125
Page Page modified
k n R MSE NMSE MAE k n R MSE MAE
Sun drying 0.051183 50.881073 0.766 0.1284 0.7483 0.2083 0.336073 213909 1.000 0.00 0.0022
Afr drying 0269248 16.20711 0.808 02268 1.3078 03313 0.085529 119172 0.994 0.0014 0.0263
Hotair drying (60 C) 1.915209 16.052813 0.726 02803 1.5538 0.4086 0204724 238 0.989 0.3124 0.4636
Hotair drying (80 °C) 0399231 41.376099 0.780 0.1647 08580 02766 0321442 0997 02329 03623
Hotar drying (100 - - . -
o - 0.893527 41.862887 0.814 0.1257 0.6396 02339 0.386271 225140 0.989 0.0030 0.0203 0.0457
Microwave drying 0.010373 1.38E-06 0.682 0.7468 33227 0.8051 10345483 126704 0999 0.6200 32438 07752
Two-term Two-term-exponential
a b k ke R MSE NMSE MAE a K :4 MSE NMSE MAE
Sun drying 03538 0382 0353882 038026 0950 03803 1.1201 02068 2541062 0677693 0993 0.0006 0.0033 00198
Air drying 0.51 0.09 051016  0.08999 0901 0.0020 0.0161 0.0410 0.985728 0088728 0.9%0 0.0020 0.0171 0.0384
Hotair drying (60 °C) .5337 0437 0.5574 043789 0.904 0.0223 0.1933 0.1375 0.998333 0.189893 0.832 0.0280 0.2863 0.1513
Hotair drying (80 °C)  0.371 0363 0.57181  0.36337 0.927 0.0167 0.1303 0.1148 2.31888 0591571 0.980 0.0049 0.0353 0.0580
Hotair drying (100 357 0437 035574 043789 0927 0.0170 0.1296 01184 2255242 0.702977 0972 0.0070 0.0504 0.0700
Microwave drying 0504 1029 050403 109.937 0.998 0.0004 0.0042 0.0132 0.993036 0.806906 0.682 0.7134 32777 0.787
Two-term-modified Verma
a b c K I R MEE NMSE MAE a K ks R MSE NMSE MAE
098
Sun drying 0.693 0219 0.69308 021948 -0.333215 ! 0.0057 0.0346 0.0661 -0.012 0.303027 033017 0933 0.0147 0.1080 0.1042
099 0222
Adr drying 0545 0.073 0.54541 0.73637 -0.085068 N 00312 02385 0.1310 5 0.1 0.10 0.986 03948 26310 05530
097 0.160
Hotair drying (60 °C) 3.739  0.021 3.73959 0.02039 -6.400024 s 0.0060 0.0456 0.0693 _ 0.1 0.10 0.664 0.0723 0.81629 0.1936
3
098 0.140
Hotair drying (80 °C) R 0.033 3.18011 0.03797 -3272332 s 0.0032 0.0218 0.0458 _ 0.1 0.10 0.639 0.1207 12693 02720
3
Hot air drying (100 ) i ) 0211 i} ) -
© 3127 0.042 3.12797 0.04398 -3.196719 s 0.0036 0.0244 0.0519 s 0.1 0.10 0.640 0.1652 1.5022 03159
099
Microwave drying 0504 1092 0.50491 109 288 -0.001971 0.0004 0.0042 0.0136 0.005 0.01 0.010 0.682 0.7593 33340 0.8122
Wang and Singh Weitnill
a b R MSE NMSE MAE a b R MSE NMSE MAE
Sun drying -0.237426 0.015927 0.983 0.0047 0.0301 0.0476 2975544 2.139003 1.00 0.0171 0.0981 0.0807
Adr drying -0.062444 0.000928 0993 0.0030 0.0223 0.0449 11.69183% 1191714 0994 0.0014 0.0110 0.0265
Hot air drying (80 “C) -0.063047 -0.01101 0989 0.0029 0.0221 0.0446 4884371 2622632 0986 0.3581 2.1842 0.4967
Hot air drying (30 °C) -0.150137 -0.010465 0987 0.0032 0.0230 0.0471 3.110908 2390327 0997 02319 1.3983 03616
Hotair drying (100 _ N _ _
o -0.202238 -0.008239 0986 0.0036 0.0248 0.0425 2588726 2251383 0989 0.1818 1.0951 03117
Microwave drying -49 416663 545.86149 0947 0.0149 0.1228 0.1017 0.009666 126777 0999 0.7632 33384 0.8142

the solutions are achieved (Yang and Landau, 2000).
In current work, number of hidden neurons and
training parameters (learning rate and momentum)
were represented by haploid chromosomes consisting
of three genes of binary numbers. The first gene
corresponds to the number of neurons in single hidden

layer and second and third genes represent the learning
rate and momentum of network, respectively. An
initial population of 60 chromosomes was randomly
generated and the termination criterion of 60 was
chosen for generation. The roulette wheel selection
based on ranking algorithm was applied for the
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Figure 1. Moisture ratio of tea leaves dried using different drying methods versus time (h)

selection operator. Uniform crossover and mutation
operators with mixing ratio of 0.5 were used and the
probabilities of the crossover and mutation operators
were adjusted at 0.9 and 0.01, respectively. In this
study, the ANN modeling and GA optimization were
performed by Neurosolution release 5.0, produced by
NeuroDimension, Inc.

Statistical analysis

The experiments were conducted in two
replications. Analysis of variance (ANOVA) of
data was performed using a computerized statistical
program called ‘MSTAT’, version C.

Results and Discussion

In this study tea leaves were dried using different
methods and moisture ratio was predicted applying
semi-empirical and intelligent models.

Semi-empirical models

Initial moisture content of tea leaves was
77.1£1.8% which indicated their susceptibility and
necessity of drying process. Fig. 2 depicts the drying
curves (moisture ratio versus time) for different
drying methods. The experimental results indicated
the absence of constant drying period and therefore
drying took place only in the falling rate period.
This illustrates that diffusion was the most likely

physical mechanism governing moisture removal
in the tea leaves. Hence, Fick’s second low could
be used to determine effective diffusivity. General
series solution of Fick’s second law for slabs is given
in Eq. 18. Constant diffusivity, uniform moisture
distribution and Thickness (L) of 0.005 m were
assumed for tea leaves. ‘ _

e S (2r+1) #°D, )

—BX ) —— — —r
S = (2n+1) Pl 4r

(18)

Simplifying above equation by considering the
first term of series gives:

AR =i‘ exp| —
P i

T,
EVe

' (19)

Values of D, Jor sun drying, air drying 25°C,
hot air drying at 60°C, 80°C, 100°C and microwave
drying were 30.9x107, 7.5x107, 15.2x107, 25.7x10-
7, 32.4x107 and 9457.2x107 m?h, respectively. The
correlation coefficients for these values were found
to be 0.848, 0.935, 0.654, 0.715, 0.744 and 0.964,
respectively. It can be seen that D, values increased
with increasing temperature during hot air drying.
Microwave drying showed the highest D, value about
three orders of magnitude higher than other drying
methods. Effective diffusivities of 3146.04x107
m*h for red bell-pepper (Yang and Landau, 2000)
and 1443.24x107m?h for onion slices (Weisburger,
1997) were reported during microwave drying. The
higher obtained D, value of microwave drying in
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Table 3. Model parameter and performance of developed GA-ANN model

Optimized GA-ANN configuration

GA-ANN performance

~ Number Learning Learning
ANN Momentum Momentum
of rate of rate of
configurati on nidden nidden of hidden output of output MSE NMSE MAE
layer layer
neurons layer i layer i
Multilayer
perceptron 0.5895 0.0617 0.5443 0.6836 0.0084 00597 0.0722
Radial basis
fanction 6 0.8372 0.8396 0.7531 0.1224 0.0110 00879 0.0783
this work could be attributed to the thickness of thin MLP R=0.991
layer sample. .

Drying data were fitted to the semi-empirical 209 ’/.,,p’
models. Model parameters and performances of § gf 7
prediction were tabulated in Table 2. The ANOVA test g 06 P
on determined coefficients for logarithmic, Midilli, gg; .«

Page, Page- modified, Verma, and Weibull, were not £03 .
significant at 95% confidence level and therefore E 02 7
could not be used for moisture ratio prediction. Their 0'(1) H
high values of MSE, NMSE and MAE also confirm 0 01 02 03 04 05 06 07 08 09 1
incapability of these models. Apart from above Frpermentalmolsturerato
mentioned models, other mathematical equations
are fairly good, while did not receive acceptable RBF feoos
performance against statistical parameters of .
MSE (min acceptable value of 0.01), NMSE (min g 02 . /v‘,/‘
acceptable value of 0.05) and MAE (min acceptable = 2? ot
value of 0.05) for all drying methods. Panchariya et gos >
al. (2002) studied mathematical modeling of MR é 3} -
during thin-layer drying of black tea and reported §03 ‘/.r
that Lewis gave better predication ability. £ 3;; 1 -

0 T T T T T T T T |
GA _AN N ’ " " ng )el‘?:lenta(iioisl(l)lfel'al?: " " 1

MLP and RBF neural networks with one :

hidden layer, 1 to 10 neurons and learning rate
and momentum values ranging from 0 to 1 were
trained using GA to achieve the optimal network
configuration and learning parameters. Optimized
MLP and RBF networks had 7 and 6 neurons in
hidden layer, respectively. Model parameters and
prediction errors of developed GA-ANN are showed
in Table 3. Prediction error values indicated much
better estimation capability of MLP as well as RBF in
comparison to semi-empirical models. The matrices
of weights (F matrix of 2x7 between input and
hidden layer, G matrix of 1x7 between hidden layer
and output layer) and bias values (BHidden matrix of
1x7 for first hidden layer and BOut matrix of 1x1 for
output layer) of optimized MLP network are:

17 fzn T zean 1077
3 '5.--}\.':{.\4 J...\ﬁ'a"u .93-

RN

0510 10734 -L68915 523808

Figure 2. Experimental versus GA-ANN predicted MR
values of dried tea leaves for MLP and RBF networks

- , 5
G=|-20736: 96676407 L1064l 18184

B =['..4993 10 62800 23830 14MxI0T 13310 330610 27040 '.G"]

=2 i
By =| 30824107 |

where the values in the first and second rows
of matrix of F representing the weights of the
connections between hidden neurons and drying
method and drying time neurons in input layer,
respectively.

Weight (W) and bias (B) values for RBF network
between hidden and output layers presented in the
following matrices:

rr=i_1.1:'.4:|3 4416651070 7470x107 115679 9.4790x107] 4.2932){19_1_]

B=‘-'.51'5x19_5i
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The performance of optimized GA-ANN models
of MLP and RBF configurations for estimation of
moisture ratio of tea leaves based on test data which
never were seen by networks during training were
studied and the results were plotted in Fig. 2. This
figure shows that the GA-ANN estimated values of
moisture ratio closely fitted with the experimental
data. However, MLP performed better prediction in
comparison than RBF (correlation coefficients values
0.991 and 0.982 for MLP and RBF, respectively) and
could be suggested for prediction of moisture ratio
during drying of tea leaves.

Conclusion

Tea leaves were dried using different methods and
their moisture ratio values were predicted by semi-
empirical and GA-ANN. Effective diffusivity were
found to be in the range of 7.5x107 to 9457.2x107
m*h . Semi-empirical models were not fully able to
predict moisture ratio of tea leaves. The best model
for estimation of MR was found to be MLP genetic
algorithm-artificial neural network with 7 hidden
neurons and R, MSE, NMSE, and MAE values of
0.991, 0.0084, 0.0597 and 0.0722, respectively. The
optimized network could be strongly suggested for
prediction of moisture ratio of tea leaves during
different drying processes.
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